翻訳と辞書
Words near each other
・ Brunton compass
・ Brunton Memorial Ground
・ Brunton Park
・ Brunton Stalker
・ Brunton, Inc.
・ Brunton, Northumberland
・ Brunton, Wiltshire
・ Bruntonichthys
・ Bruntsfield
・ Bruntsfield Hospital
・ Bruntsfield Links
・ Bruntwood
・ Bruntwood Loch
・ Bruntál
・ Bruntál District
Brunt–Väisälä frequency
・ Brunvand
・ Brunville
・ Brunvillers-la-Motte
・ Brunvoll Glacier
・ Bruny Island
・ Bruny Island Ferry
・ Bruny Island language
・ Bruny Island Premium Wines
・ Bruny Surin
・ Bruny, Poland
・ Brunyarra
・ Brunyola
・ Brunémont
・ Brunó Ferenc Straub


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brunt–Väisälä frequency : ウィキペディア英語版
Brunt–Väisälä frequency

In atmospheric dynamics, oceanography, asteroseismology and geophysics, the Brunt–Väisälä frequency, or buoyancy frequency, is the angular frequency at which a vertically displaced parcel will oscillate within a statically stable environment. It is named after David Brunt and Vilho Väisälä.
==Derivation for a general fluid==
Consider a parcel of (water or gas) that has density of \rho_0 and the environment with a density that is a function of height: \rho = \rho (z). If the parcel is displaced by a small vertical increment z', it will be subject to an extra gravitational force against its surroundings of:
:\rho_0 \frac = - g (\rho (z)-\rho (z+z'))
g is the gravitational acceleration, and is defined to be positive. We make a linear approximation to \rho (z+z') - \rho (z) = \frac z', and move \rho_0 to the RHS:
:\frac = \frac \frac z'
The above 2nd order differential equation has straightforward solutions of:
:z' = z'_0 e^\!
where the Brunt–Väisälä frequency ''N'' is:
:N = \sqrt \frac}
For negative \frac, z' has oscillating solutions (and N gives our angular frequency). If it is positive, then there is run away growth – i.e. the fluid is statically unstable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brunt–Väisälä frequency」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.